Comment on "paired gap states in a semiconducting carbon nanotube: deep and shallow levels".
نویسندگان
چکیده
Several paired, localized gap states were observed in semiconducting single-wall carbon nanotubes using spatially resolved scanning tunneling spectroscopy. A pair of gap states is found far from the band edges, forming deep levels, while the other pair is located near the band edges, forming shallow levels. With the help of a first-principles study, the former is explained by a vacancy-adatom complex while the latter is explained by a pentagon-heptagon structure. Our experimental observation indicates that the presence of the gap states provides a means to perform local band-gap engineering as well as doping without impurity substitution.
منابع مشابه
Creation of paired electron states in the gap of semiconducting carbon nanotubes by correlated hydrogen adsorption
The specific, local modification of the electronic structure of carbon nanomaterials is as important for novel electronic device fabrication as the doping in the case of silicon-based electronics. Here, we report low temperature scanning tunneling microscopy and spectroscopy study of semiconducting carbon nanotubes subjected to hydrogen-plasma treatment. We show that plasma treatment mostly res...
متن کاملTheoretical Calculations of the Effect of Finite Length on the Structural Properties of Pristine and Nitrogen-doped Carbon Nanotubes
The effect of impurities on quantum chemical parameters of single-walled nanotubes (SWNTs) was studied using density functional theory (DFT). The density of states (DOS), Fermi energy and thermodynamic energies of (5,5) carbon nanotubes were calculated in the presence of nitrogen impurity. It was found that this nanotube remains metallic after being doped with one nitrogen atom. The partial den...
متن کاملReentrant semiconducting behavior of zigzag carbon nanotubes at substitutional doping by oxygen dimers.
The electronic structures of carbon nanotubes doped with oxygen dimers are studied using the ab initio pseudopotential density functional method. The fundamental energy gap of zigzag semiconducting nanotubes exhibits a strong dependence on both the concentration and configuration of oxygen-dimer defects that substitute for carbon atoms in the tubes and on the tube chiral index. For a certain ty...
متن کاملDirect observation of band-gap closure for a semiconducting carbon nanotube in a large parallel magnetic field.
We have investigated the magnetoconductance of semiconducting carbon nanotubes (CNTs) in pulsed, parallel magnetic fields up to 60 T, and report the direct observation of the predicted band-gap closure and the reopening of the gap under variation of the applied magnetic field. We also highlight the important influence of mechanical strain on the magnetoconductance of the CNTs.
متن کاملChemistry and electronics of carbon nanotubes go together.
One of the critical issues for the application of single-wall carbon nanotubes (SWCNTs) in nanoelectronics is the control of their electronic properties, which can be either metallic or semiconducting in their pristine form, depending on their diameter and chirality. Since all known preparative methods yield mixtures of metallic and semiconducting nanotubes, extensive research has been devoted ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 95 16 شماره
صفحات -
تاریخ انتشار 2005